

Rethinking All Mechanism of Scaffold Thrombosis and How to Fix It?

Yoshinobu Onuma MD, PhD

Erasmus MC, Rotterdam, the Netherlands Cardialysis, Rotterdam, the Netherlands

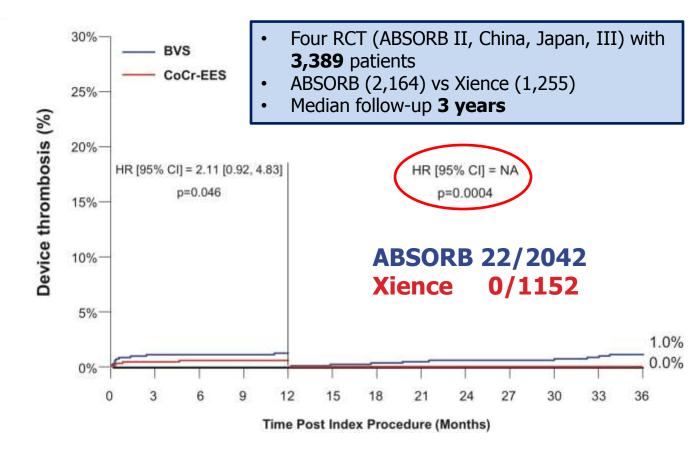
Norihiro Kogame, MD, Yuki Katagiri, MD,

Taku Asano, MD, Kuniaki Takahashi, MD

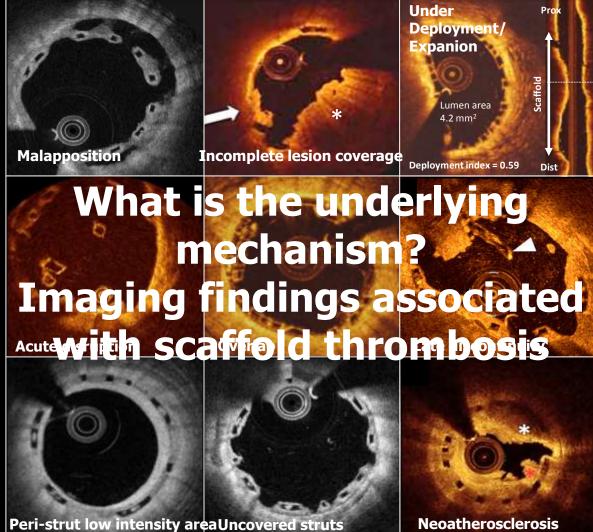
Academic medical Centre, Amsterdam, the Netherlands

Patrick W. Serruys MD, PhD

Professor of Cardiology of Imperial College, UK Dr. Honoris Causa in Biomedical Engineering, Melbourne university, Australia Emeritus Professor of Cardiology, Erasmus MC, the Netherlands



Disclosure Statement


Yoshinobu Onuma, MD. PhD.

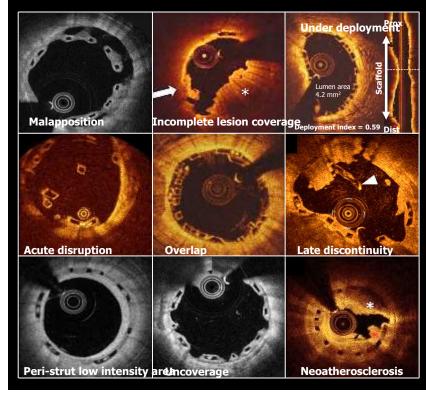
Advisory board of Abbott Vascular

High incidence of very late scaffold thrombosis at 3 years

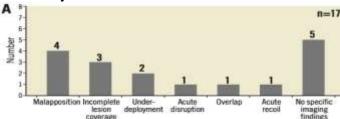
Ziad A. Circulation. 2018 Jan 30;137(5):464-479.

Sotomi et al. EI 2016

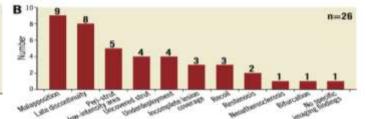
Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging

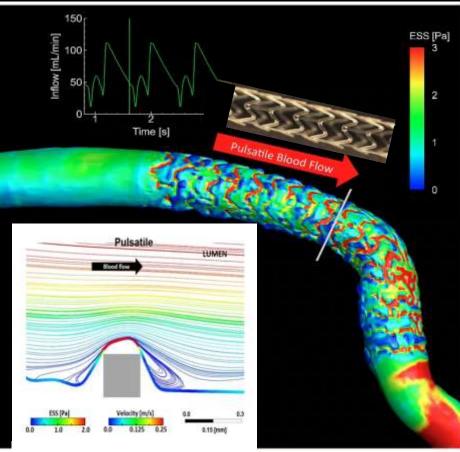

Voluci Sotonii", MD, Parnipe Sevanament⁽³⁾, MD; Pattick W. Serrape¹⁴, MD; PhD; Yoshinshu Onzen², MD, PhD

Systematic review


Imaging findings in ScT cases

• **Early ScT (N=17)** malapposition (24%), incomplete lesion coverage (18%), and underdeployment (12%)

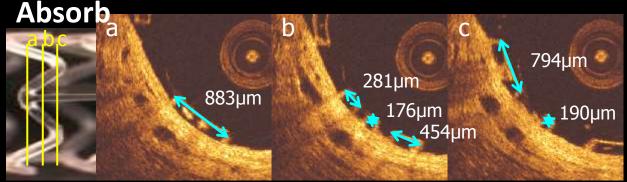

• Late/very late ScT (N=26) malapposition (35%), late discontinuity (31%) and peri-strut low-intensity area (19%)

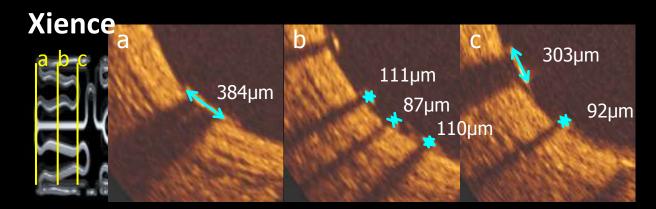

Early scaffold thrombosis

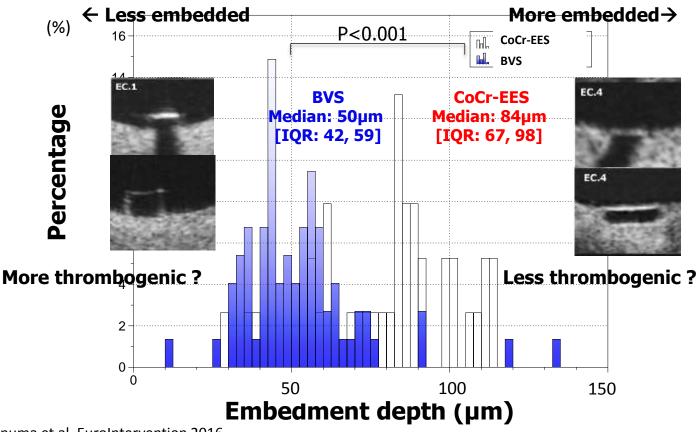
Late/very late scaffold thrombosis

Fusion of Angio and OCT, pulsatile flow, non-Newtonian fluid and shear stress immediately after Absorb implantation in a human being

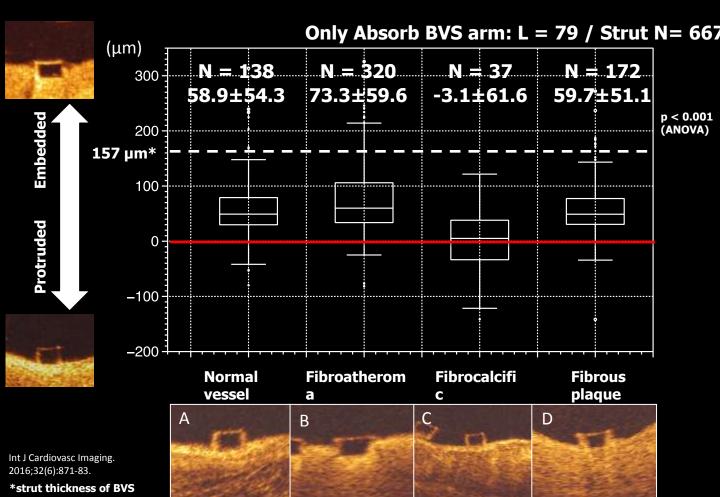
Tenekecioglu E, Poon E, et al. Serruys PW. The Nidus for Possible **Thrombus Formation: Insight From the Microenvironment of Bioresorbable Vascular** Scaffold. JACC Cardiovasc Interv. 2016 Oct 24;9(20): 2167-2168. Tenekecioglu et al. Int J Cardiol. 2017 Jan 15;


227:467-473.


Snowshoe Versus Ice Skate for Scaffolding of Disrupted Vessel Wall*


Patrick W. Serruys, MD, PHD, Pannipa Suwannasom, MD, Shimpei Nakatani, MD, Yoshinobu Onuma, MD, PHD

Difference of Strut Width in each part (Hinge, Link, Ring)

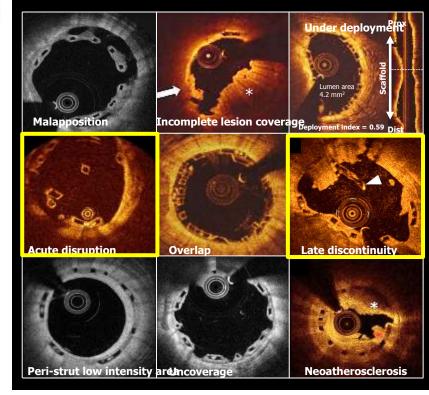


ABSORB Japan OCT-1 Subgroup Distribution of embedment depth of BVS and CoCr-EES

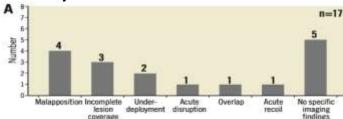
Onuma et al. EuroIntervention 2016

Embedment depth stratified by underlying plaque type

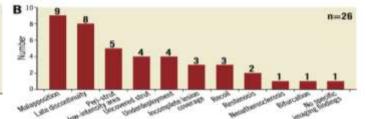
Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging


Voluci Sotonii", MD, Parnipe Sevanament⁽³⁾, MD; Pattick W. Serrape¹⁴, MD; PhD; Yoshinshu Onzen², MD, PhD

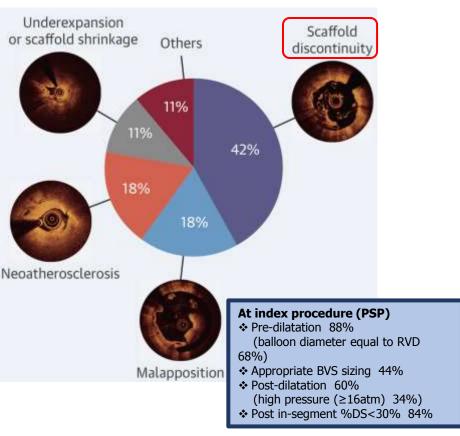
Systematic review


Imaging findings in ScT cases

• **Early ScT (N=17)** malapposition (24%), incomplete lesion coverage (18%), and underdeployment (12%)

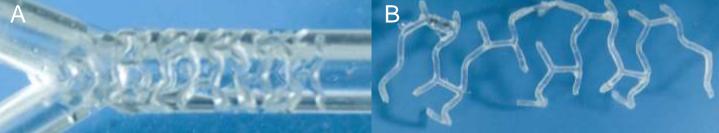

• Late/very late ScT (N=26) malapposition (35%), late discontinuity (31%) and peristrut low-intensity area (19%)

Early scaffold thrombosis



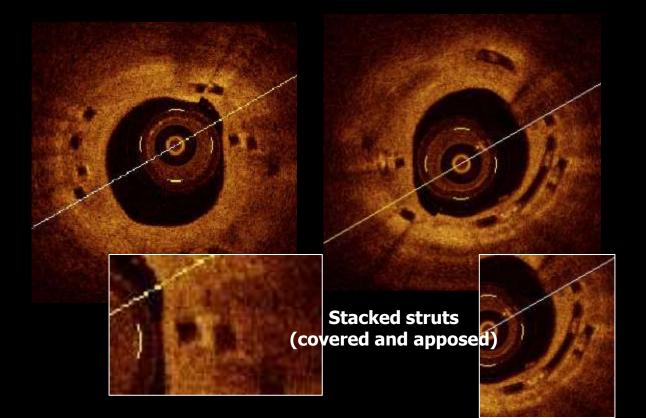
Late/very late scaffold thrombosis

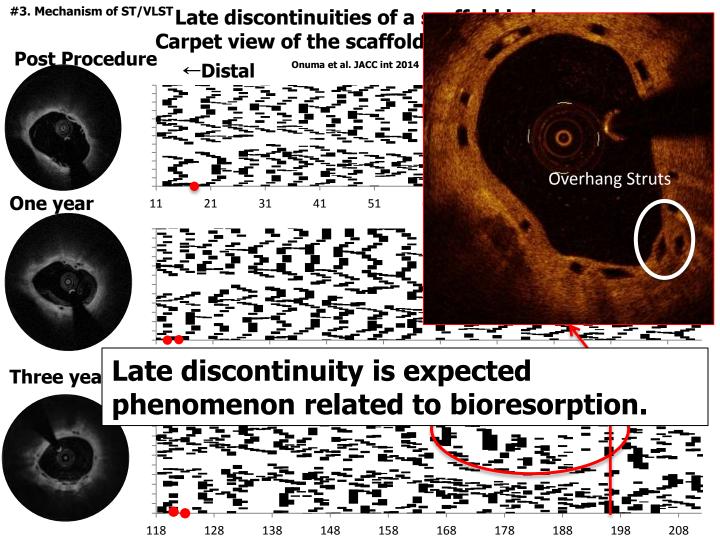
Mechanisms of Very Late Scaffold Thrombosis: The INVEST Registry


- > Multicenter registry
- Total 36 patients (38 lesions) with
 VLScT underwent
 OCT
- VLScT occurred at a median of 20 months
- At the time of VLScT, 83% of patients received aspirin monotherapy, 17% received DAPT
- The leading mechanism of underlying VLScT was scaffold discontinuity (42.1

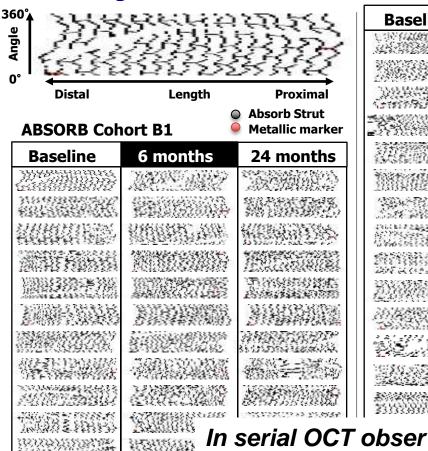
Yamaji, K. et al. J Am Coll Cardiol.201

3 criteria to judge acute disruption/late discontinuities on OCT


	Time of OCT observation		
	Post procedure	Late	
disruption	•Stacked struts	Persistent	
	•Overhung struts		
	 Isolated intra- luminal strut(s) 		
Late Scaffold discontinuities	No disruption	 Stacked/ overhung / isolated or intraluminal strut (s) 	



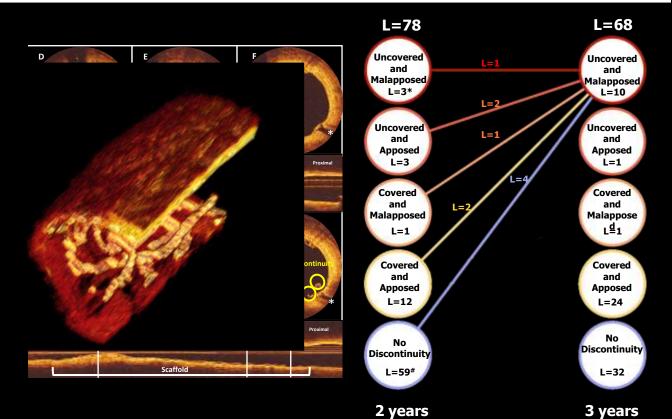
Onuma et al. JACC int 2014


#3. Mechanism of ST/VLST

Late discontinuities observed in porcine coronary artery

Serial changes of strut distribution

ABSORB Cohort B2


BRS textbook

Baseline	12 months	36 months
CENTRALIZZE DESERVIZZE	2122-714934904	NO MARK
		STOPENS
SAN ANALANA SANTARANAN		
A HARRESS	AND	
	ann air	NIC MAL
INTERNAL	ANNERSKE STATES	
AND	Not available	ng maan tee see see see see see see see see see
	Kannaz	810 min 1
		BRIER
DEN MARKE		
必然的印根	公徽 《[2]]	
ġe		MARINE STR

In serial OCT observation up to 36 months, late discontinuities were observed in 43%, $\frac{1}{1}$ without clinical events

Onuma et al. JACC int 2014

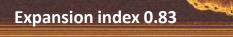
Frequency of late discontinuities between 2 and 3 years (truly serial analysis at lesion level) -by courtesy of Prof. Kimura

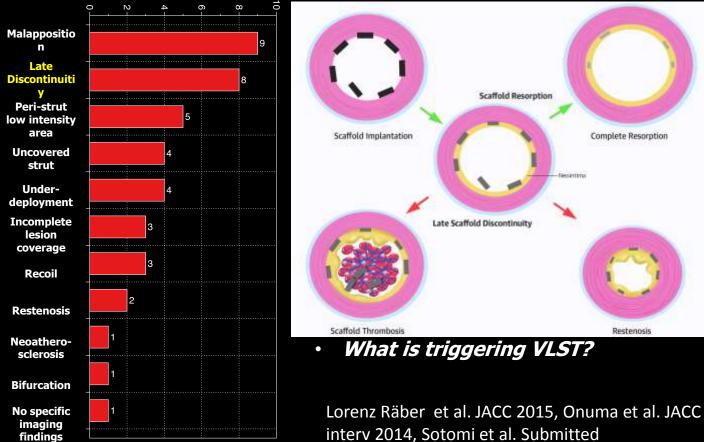
* Two lesions were not analyzable at 3 years. # Eight lesions were not analyzable at 3 years

#3. Mechanism of ST/VLST

VLST case (Day 494)

Post thrombectomy


Distal


Section 1

Status of antiplatelet therapy

ASA: quit at 487 days (1 week before event) Clopidogrel: quit at 1 year Ciostazol: quit at 3 weeks Proximal

Imaging findings associated with Late/ Very Late scaffold thrombosis reported in literature

Can operator improve the outcomes ?

Scaffold or stent thrombosis in ABSORB II trial 2 : 1 randomization

	Absorb 335 patients	Xience 166 patients	p value
Definite ST	2.5% (8)	0.0% (0)	0.06
Acute (0-1 day)	0.3% (1)	0.0% (0)	1
Sub-acute (2-30 days)	0.3% (1)	0.0% (0)	1
Late (31-365 days)	0.0% (0)	0.0% (0)	1
Very late (>365 days)	1.8% (6)	0.0% (0)	0.19

- The ABSORB II trial was plagued by the unexpected occurrence of very late scaffold thromboses, although the observation did not reach statistical significance when compared to the non-occurrence of VLST in the Xience arm.
- It is hypothesized that these late and very late events (up to 3 years) are related to the acute suboptimal implantation results such as under-expansion and malapposition.
- The objective of the current study is to investigate the possible relationship of baseline demographics, post-procedural angiographic and ultrasound imaging results with the occurrence of definite very late scaffold thromboses in the Absorb II trial, in order to unravel potential **predictors of very late complications**.

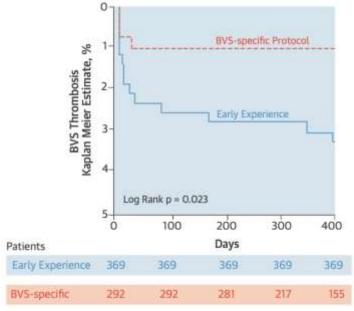
In-Depth Analysis of ABSORB II: Poor Expansion Index Might Be Responsible For Very Late Scaffold Thrombosis? True or Not True?

IVUS Expansion index QCA parameter (%) Percent diameter stenosis Absorb n=275 15 Percentage Minimum lumen diameter Lesion coverage ratio ٠ 10 **IVUS** parameter 5 Minimum lumen diameter **Bad expansion** Good expansion **Expansion** index Minimum eccentricity inde> ٠ (%) Asymmetry index **Deployment index** 5 Percentage Maximal ISA distance 10 Full presentation: 15 Xience n=150 1:55-2:05 PM, Tuesday, 0.2 0.4 0.6 0.8 0.9 1.0 1.2 1.4 February 21, 2017 Expansion index **Palladian Ballroom**

In-Depth Analysis of ABSORB II: Poor Expansion Index Might Be Responsible For Very Late Scaffold Thrombosis? True or Not True?

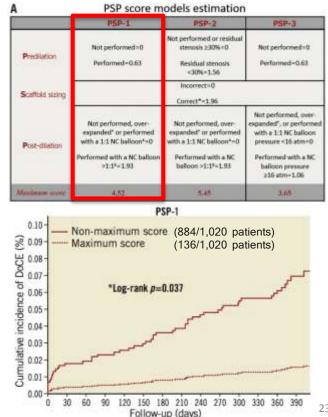
Predictors for VLScT: Univariate Cox regression analysis

Variable	Odds ratio [95% confidence interval]	p value
Procedure		
Post-dilatation performed	0.55 [0.11-2.78]	0.471
Post-dilatation maximal pressure (atm)	0.76 [0.51-1.13]	0.176
QCA		
In-device % diameter stenosis (%)	1.07 [0.96-1.19]	0.218
In-device minimum lumen diameter (mm)	2.58 [0.25-26.08]	0.422
Lesion coverage ratio per 0.1 increase	0.74 [0.56-0.98]	0.032
IVUS		
Minimum lumen diameter (mm)	1.80 [0.18-17.74]	0.613
Asymmetry index per 0.1 increase	0.34 [0.10-1.18]	0.088
Expansion index per 0.1 increase	0.58 [0.32-1.04]	0.066
Minimum eccentricity index per 0.1 increase	2.29 [0.63-8.35]	0.208
Deployment index per 0.1 increase	1.78 [0.75-4.22]	0.188
Expansion index <0.6	6.93 [1.24-38.82]	0.028


Full presentation: 1:55-2:05 PM, Tuesday, February 21, 2017, Palladian Ballroom

Impact of PSP strategy studied in registries

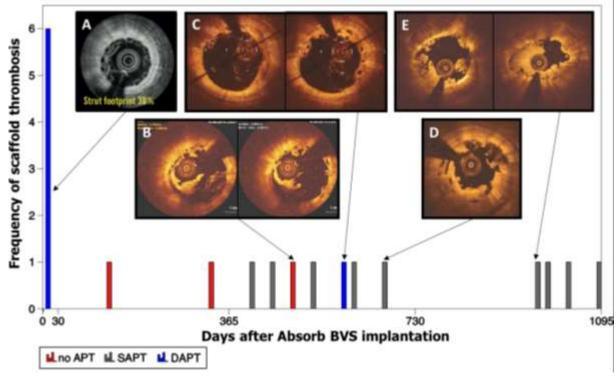
Bioresorbable Coronary Scaffold Thrombosis


Multicenter Comprehensive Analysis of Clinical Presentation, Mechanisms, and Predictors

Puricel et al. J Am Coll Cardiol. 2016;67:921-3

Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score

Ortega-Paz et al. EuroIntervention 2017;12:2110-211



23

Late thrombotic events after bioresorbable scaffold implantation: a systematic review and meta-analysis of randomized clinical trials

Carlos Collet¹, Taku Asano¹, Yosuke Miyazaki², Erhan Tenekecioglu², Yuki Katagiri¹, Yohei Sotomi¹, Rafael Cavalcante², Robert J. de Winter¹, Takeshi Kimura³, Runlin Gao⁴, Serban Puricel⁵, Stéphane Cook⁵, Davide Capodanno⁶, Yoshinobu Onuma², and Patrick W. Serruys⁷*

Collet et al. EHJ. 2017

Conclusion

- Recent meta-analyses of mid-term outcomes (2-3 years) demonstrated increased rates of scaffold thrombosis as well as very late scaffold thrombosis after implantation of the Absorb scaffold in comparison with the Xience stent.
- Malapposition and protruding struts resulting in recirculation behind struts are the important mechanisms for early scaffold thrombosis. This could be prevented by applying better procedural technique and reducing strut thickness with better embedment.
- Late discontinuity seems to be one of major mechanisms of VLScT. Late discontinuities is in general a benign change during the bioresorption process, occurring in 40% up to 3 years. However, in case struts are not covered by neointima, late discontinuity could be a malignant potential cause of ScT. Under-expansion might also play a role the occurrence of VLScT; hypothetically when discontinuities occurs in underexpanded segment, this could cause a collapse of scaffold.
- Enhancement of neointimal coverage before the scaffold lose its mechanical integrity would be a key to prevent ScT associated with late discontinuity. This could be achieved by improving techniques, tuning bioresorption profile and drug elution.